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Nonlinear wave propagation in a 1D photonic crystal containing single-negative layers is investigated using
the multiple-scale method. In this approach, the electric field is decomposed into a slowly varying envelope
function and a fast Bloch-like function to obtain the analytic expressions of the effective parameters of
an equivalent medium. The periodic structure has an equivalent left-handed medium for the envelope
function. Gap soliton formation is discussed and compared with that associated with the Bragg gap.
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Wave propagation in photonic crystals has been an ac-
tive research area for more than a decade[1−5]. Con-
ventional photonic crystals are synthesized based on
the periodic arrangement of different materials with
positive electric permittivity and magnetic permeabil-
ity (right-handed medium). Gaps in such photonic
crystals result from Bragg reflections. Experiments on
left-handed metamaterials[6] have recently revealed the
possibility of fabricating unconventional photonic crys-
tals. Left-handed materials are characterized by simul-
taneously negative electric permittivity and magnetic
permeability[7]. These materials are also known as dou-
ble negative (DNG) materials. DNG metamaterials are
composites of materials in which either permittivity or
permeability is negative. Such materials are referred to
as single-negative (SNG) materials. Inclusion of DNG
and SNG materials in photonic crystals can result in
many new and interesting phenomena for linear and non-
linear wave propagation[8−11]. A SNG characterized by
negative permittivity is referred to as epsilon-negative
(ENG), whereas that exhibiting negative permeability is
called mu-negative (MNG). A pair of ENG and MNG
can be referred to as a conjugate pair[12]. Wave prop-
agation has recently been studied in photonic crystals
containing alternate ENG and MNG layers[13−22]. The
refractive index in a SNG material is imaginary, result-
ing in evanescent modes in a bulk medium. In a one-
dimensional (1D) periodic structure containing alternate
ENG and MNG layers, propagating modes can assume a
structure described by the tight binding model in solid-
state physics. An interesting phenomenon occurring in
this structure is the appearance of a zero-φ gap. The
properties of the zero-φ gap rather differ from those of a
Bragg gap[16−19] because it results from a different mech-
anism. Some applications have also been shown to use
these properties[17,19].

Most investigations on wave propagation in 1D peri-
odic structures containing SNG materials have been con-
ducted using layer-by-layer calculations. In this case, the
wave propagation is locally treated within each layer;
as we proceed to the other layer, the boundary condi-

tions have to be applied at the interface between the
two layers. An analytic solution for the wave propaga-
tion in a periodic medium can be obtained if specific
conditions are satisfied. Analytic approaches provide a
general view of wave propagation and more insights into
the nature of the processes that occur. Here, we applied
the envelope function approach[23−25], which is based on
the multiple-scale method, to investigate the nature of
the wave propagation in such structures. This approach
allows the characterization of the periodic structure by
few parameters, which is different from the conventional
piecewise description of the structure. In this approach,
the electric field can be decomposed into a fast Bloch-
like component and a slow envelope function. In the
slow envelope function, the periodic structure behaves
as a homogeneous slab of material for linear and nonlin-
ear wave propagation. The fast Bloch-like components
determine the local behavior of the electric field within
the repeating units. By using the transfer matrix ap-
proach for linear wave propagation, a periodic structure
with alternating ENG and MNG layers can be effectively
treated as a left-handed medium[21]. Using this approach,
we can directly establish this similarity because the struc-
ture behaves as a homogenous medium for the envelope
function. Most studies on such structures have examined
linear wave propagation. The major advantage of the
envelope function approach is that nonlinear wave prop-
agation is easily and effectively treated.

Here, we consider a 1D structure of alternating lay-
ers a and b, which are assumed to be ENG and MNG,
respectively. Given that SNG materials are inherently
dispersive, the electric permittivity in layer a and mag-
netic permeability in layer b are represented by a Drude
model, where absorption is negligible.

For layer a, which is assumed to be ENG, the linear
values are defined as

εa = 1 −
ω2

pe

ω2
, µa = 1. (1)

For layer b, which is assumed to be MNG, these values
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are

εb = 1, µb = 1 −
ω2

pm

ω2
. (2)

Therefore, the refractive indices in the two layers are
given by

na =
√
εaµb, nb =

√
εbµb. (3)

Layer a behaves as an ENG layer in the frequency range
ω<ωpe, and layer b behaves as a MNG layer in the
frequency range ω<ωpm. Here, we have assumed that
ωpe=ωpm. Thus, the two layers behave as SNG layers in
the same frequency range. Although imaginary, the re-
fractive index has the same value in both layers. To apply
the envelope function approach, the contrast in therefrac-
tive index of the two media should be small (zero in the
limiting case, Kogelnik approximation). In the current
case, a zero-φ gap appears when no contrast is observed
in the refractive index of the two media. The mismatch in
the local phase shifts is produced by the different widths
of the two layers.

The dispersion relation for the normally incident wave
in a periodic structure containing alternate layers of ENG
and MNG materials can be written as

cos qd = cosh(kada) cosh(kbda)

− 1

2

(ηa

ηb
+
ηb

ηa

)

sinh(kada) sinh(kbdb), (4)

where q is the Bloch wave vector. The local wave vec-
tors in the two layers are imaginary, with absolute values
given by

ka =
√

|εaµa|k0, kb =
√

|εbµb|k0, (5)

where k0 is the free space wave vector. The absolute
values of the wave impedance in the two layers are

ηa =

√

∣

∣

∣

µa

εa

∣

∣

∣
, ηb =

√

∣

∣

∣

µb

εb

∣

∣

∣
. (6)

The horizontal axis shows the “qd.”
Figure 1 shows the dispersion relation for the struc-

tural parameters within the frequency range in which
the two layers behave as SNG media. At low frequen-
cies, where ηa 6=ηb, | cosqd | > 1 corresponds to a gap and
| cosqd | < 1 corresponds to a propagating region. At a
certain frequency, the wave impedances in the two layers
are identical, i.e., η1 = η2. Considering that the widths
of the two layers differ in the present case, a mismatch
in the local phase shifts, i.e., kada 6= kbdb, occurs at this
wave impedance matching frequency, which corresponds
to | cosqd | > 1. Furthermore, a zero-φ gap is observed.

The nonlinear wave equation for the normally incident
wave in this periodic structure can be written in cgs units
as

−c2 ∂
2E(x, t)

∂x2
+ µ(x)ε(x)

∂2E

∂t2

= 4πµ(x)χ(3)(x)
∂2

∂t2
[E(x, t)]3. (7)

We assume that the nonlinearity results from the non-
linear electric polarization in either the ENG or MNG

Fig. 1. Dispersion curve for ωpe = ωpm = 3.3 × 1011 rad/s,
da=0.7×10−3 m, db=0.3×10−3 m, and d =1×10−3 m in the
frequency range within which the layers behave as SNG me-
dia. On the vertical axis, frequency is in dimensionless units,
i.e., W = ωd

c
.

layer. The nonlinear polarization starts because of third-
order susceptibility, which is the most commonly occur-
ring nonlinearity exhibited by centrosymmetric and non-
centrosymmetric media. Magnetic permeability is as-
sumed linear in both layers. Equation (7) is solved using
the multiple-scale method by introducing

xi = six

i = 0, 1, 2, 3· · ·, s << 1

ti = sit

E(xi, ti) = se1(xi, tt) + s2e2(xi, tt) + s3e3(xi, ti) + · · ·
(8)

The approach[24] was previously used for a periodic struc-
ture of right-handed layers. The procedure involves sub-
stitutions in Eq. (7) from Eq. (8). The coefficients of s
with equal powers on both sides of the equation are then
equated. Equating the coefficient of s splits the electric
field into a slow envelope function a(x1, x2 · · · ; t1, t2..)
and a fast Bloch function φm(x0). A number of features
have emerged because of the inclusion of SNG layers.
The product ε(x)µ(x) is negative in both layers. The
propagating modes in this structure can appear if the or-
thogonality condition for the normalized Bloch functions
φm is

∫

φ∗m′ε(x)µ(x)φm = −δmm′. (9)

This condition and the coefficient of s2 give

∂a

∂t
− ω

′

m

∂a

∂x
= 0, (10)

where ω
′

m is the group velocity of the envelope function.
In a 1D periodic structure containing a right-handed
material[24],

∂a

∂t
+ ω

′

m

∂a

∂x
= 0. (11)

Equations (10) and (11) suggest that in a structure of
alternating ENG and MNG layers, the envelope function
moves at a group velocity opposite to the direction of the
x -axis (negative group velocity). By contrast, the enve-
lope function travels in the direction of the x-axis (posi-
tive group velocity)in a structure of right-handed layers.
Given that the wave vector of the propagating mode lies
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along the positive direction of the x -axis and the phase
velocity is along the direction of the wave vector, a posi-
tive group velocity indicates that the phase velocity and
group velocity have the same direction. In addition, a
negative group velocity indicates that the phase veloc-
ity and group velocity have opposite directions. One of
the basic characteristics of a left-handed medium is that
the phase velocity and the group velocity are in opposite
directions[7]. Thus, the structure considered in this study
is an equivalent left-handed medium.

Collecting the coefficient of s3 and following the same
procedure, a modified nonlinear Schrödinger equation is
obtained.

i
∂a

∂t
− 1

2
ω

′′

m

∂2a

∂z2
− αm|a|2a = 0, (12)

where z = x + ω
′

mt, ω
′′

m is the group velocity dispersion,
and αm is the effective nonlinear coefficient.

In a right-handed periodic medium[24], the signs of the
second and third terms in Eq. (12) are positive. This

equation accepts a soliton solution when αm and ω
′′

m have
the same signs, i.e., both are negative or positive. In the
present case, the positive values of αm and ω

′′

m corre-

spond to the negative values of αm and ω
′′

m because the
signs of two terms were reversed. Therefore, the effective
medium behaves as a left-handed medium.

For example, if the Bloch functions lie on the edges of
the zero-φ gap where the group velocity vanishes, z = x,
and the envelope function is at rest in space. Assuming
a harmonic time dependence for the envelope function,
the following equation is obtained

a(x, t) = ψ(x)e−iδt, (13)

where δ can be considered as the detuning, i.e., δ =
ω − ωm.

Thus, we obtain an equation of the form

d2ψ

dX2
−B2ψ + 2

B2

A2
|ψ|2ψ = 0, (14)

A =

√

2δ

αm
, B =

√

2δ

ω
′′

m

. (15)

To obtain real values of A and B, δ should have the
same sign as those of αm and ω

′′

m, s shown in the case
considered in Ref. [24]. At the edge of a gap, a positive
detuning corresponds to a frequency that lies above the
lower edge. By contrast, negative detuning corresponds
to a frequency that lies below the upper gap edge inside
the gap. For Bragg gaps, gap soliton formation has been
observed at its edges[26]. Gap solitons form at the lower
edge of the Bragg gap for a negative effective nonlinear
coefficient and at the upper edge for a positive effective
nonlinear coefficient. In the present case, the gap soli-
ton at the lower edge of the gap forms when the effective
nonlinear coefficient is positive. At the upper edge, this
phenomenon occurs when the nonlinearity is negative.
This effect has been studied on a 1D structure consisting
of alternate left-handed and right-handed layers by using
the transfer matrix approach[9,11].

In conclusion, nonlinear wave propagation in a periodic

structure containing alternate MNG and ENG layers is
examined using the envelope function approach in which
the periodic structure is a homogenous medium. This
homogeneous medium possesses characteristics similar
to those of a left-handed medium. The group and phase
velocities are opposite in directions, and the effective
nonlinearity of the medium is opposite to that of the
medium of right-handed layers. A similarity between
the periodic structures of SNG layers and a homogenous
left-handed medium is indicated in Ref. [21] for linear
wave propagation. The approach used in the current
study further shows this similarity for nonlinear wave
propagation.
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